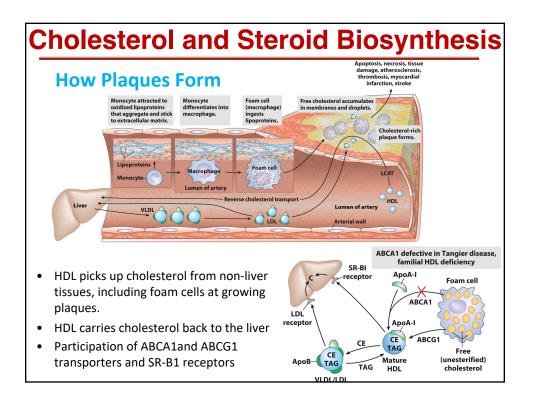

BI/CH 422/622		
OUTLINE: Introduction and review	ANABOLISM I: Carbohydrates	
Transport Glycogenolysis Glycolysis	Carbon Assimilation – Calvin Cycle	
Other sugars Pasteur: Anaerobic vs Aerobic Exam-1 material	Stage One - Rubisco	
Fermentations Pyruvate Krebs ^c Cycle Oxidative Phosphorylation Electron transport Chemiosontic theory: Phosphorylation	Carboxylase Oxygenase Glycolate cycle Stage Two – making sugar Stage Three – remaking Ru 1,5Pz	
Fat Catabolism Fatty acid Catabolism Mobilization from tissues (mostly adipose) Activation of fatty acids	Overview and regulation Calvin cycle connections to biosynthesis C4 versus C3 plants Kornberg cycle – alty oxy late	
Transport; carnitine Oxidation: β-oxidation, 4 steps: Protein Catabolism Amino-Acid Degradation Dealing with the nitrogen; Urea Cycle Dealing with the carbon; Seven Families Nucleic Acid & Nucleotide Degradation	Carbohydrate Biosynthesis in Animals precursors Cori cycle Gluconeogenesis reversible steps irreversible steps - four energetics	
PHOTOSYNTHESIS: Overview of Photosynthesis Key experiments: Light Reactions	2-stéps to PEP in mitochondria: Pyr carboxylase-biotin & PEPCK FBPase GéPase Glycogen Synthesis UDP-Gic Glycogen synthase	
energy in a photon pigments HOW Light absorbing complexes-"red-drop experiment" Reaction center Photosystems (PS) PSII - oxygen from water splitting PSI - NADPH Proton Motive Force - ATP	Pranching Pentose-Phosphate Pathway oxidative-NADPH non-oxidative-Ribose 5-P Regulation of Carbohydrate Metabolism Acetyl-CoA/Pyruvate Pyruvate/PEP F6P/FBP: Fru 2,6P2 Glc/Glc6P: sequestration Glycogen: PKA/PP1	
Proton Motive Force - AIP Overview of light reactions	Anaplerotic reactions End of Exam-4 material	

BI/CH 422/622		
ANABOLISM OUTLINE:		
Biosynthesis of Fatty Acids and Lipids		
contrasts location & transport Synthesis acetyl-CoA carboxylase fatty acid synthase ACP priming 4 steps Control of fatty acid metabolism Diversification of fatty acids	brane lipids Glycerophospholipids Sphingolipids Isoprene lipids: Cholesterol Ketone body synthesis Mevalonate Cholesterol bile acids steroids metabolism control of cholesterol biosynthesis	
elongation desaturation Eicosanoids Prostaglandins and Thromboxane Triacylglycerides Biosynthesis of A Nitrogen fixation nitrogenase	mino Acids and Nucleotides	



Cholesterol and Steroid Biosynthesis

Cardiovascular Disease (CVD) Is Multifactorial

- Very high LDL-cholesterol levels tend to correlate with atherosclerosis.
 - although many heart attack victims have normal cholesterol, and many people with high cholesterol do not have heart attacks
- Low HDL-cholesterol levels are negatively associated with heart disease.
- Reverse Cholesterol Transport by HDL explains why HDL is cardioprotective

Cholesterol and Steroid Biosynthesis Familial Hypercholesterolemia

- Due to genetic mutation in LDL receptor
- Impairs receptor-mediated uptake of cholesterol from LDL
- Cholesterol accumulates in the blood and in foam cells.
- Regulation mechanisms based on cholesterol sensing inside the cell don't work.

но

ОН

coo

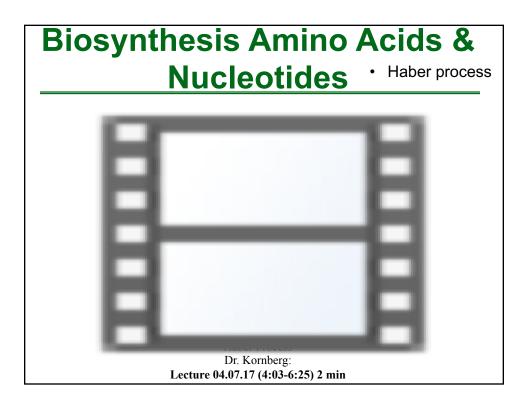
• Homozygous individuals can experience severe CVD as youths.

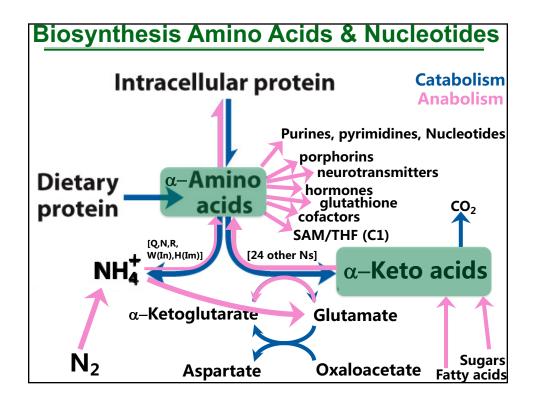
Statin Drugs Inhibit HMG-CoA Reductase to Lower Cholesterol Synthesis

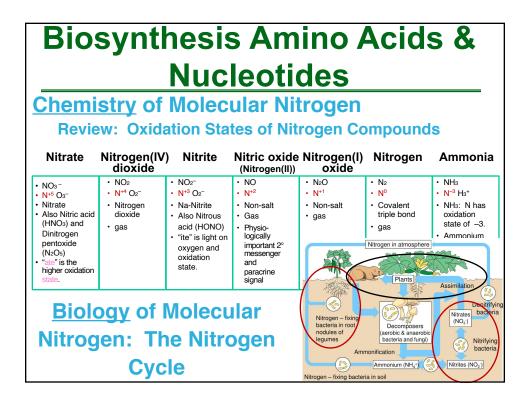
- Statins resemble mevalonate → competitive inhibitors of HMG-CoA reductase
- First statin, lovastatin, found in fungi
 - lowers serum cholesterol by tens of percent
- Also reported to improve circulation, stabilize plaques by removing cholesterol from them, and reduce vascular inflammation

Cholesterol and Steroid Biosynthesis We learned that: Summary • synthesis of fatty acids is a multistep process starting from acetyl-CoA and its carboxylated product, malonyl-CoA; it uses a poly-enzyme protein • After synthesis of palmityl-CoA, fatty acids are elongated and desaturated; PUFAs are used for prostaglandin, thromboxane, and leukotriene synthesis • phospholipids are a precursor to TAGs • phospholipids and TAGs are built on a glycerol backbone that can be derived from dihydroxyacetone phosphate or glycerol • head groups are attached using one of two methods, both use CDP carrier • pathways to the synthesis of specific head groups vary by organism and may use salvage pathways • Ketone-body synthesis goes through HMG-CoA • cholesterol is derived from isoprene units, which comes from HMG-CoA • production of isoprene for cholesterol biosynthesis occurs via the mevalonate pathway and starts with multiple acetyl-CoA • cholesterol can be metabolized and modified in a variety of ways • cholesterol and TAGs are trafficked in lipoproteins; classified by density • Regulation of lipid biosynthesis....both fatty acids and cholesterol

ANABOLISM III: Biosynthesis Amino Acids & Nucleotides

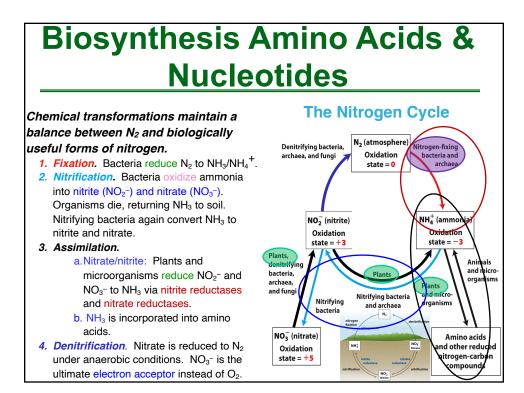

ANABOLISM III: Biosynthesis Amino Acids & Nucleotides


- 1) Nitrogen fixation: $N_2 \rightarrow {}^+NH_4$
- 2) Nitrogen assimilation: incorporation of ammonia into biomolecules
- 3) Biosynthesis of amino acids
 - a) non-essential
 - b) essential
- 4) Biosynthesis of nucleotides
- 5) Control of nitrogen metabolism
- Biosynthesis and degradation of heme; other 2° products of amino acids


Biosynthesis Amino Acids & Nucleotides

- Nitrogen (after H, O, and C) is a major element of living organisms
- Most nitrogen is inert in the atmosphere as dinitrogen
- Making dinitrogen useful is not easy

Atmosphere is 80% N₂, but is chemically inert need N₂ + 3 H₂ \rightarrow 2 NH₃ Even though $\Delta G'^{\circ} = -33.5$ kJ/mol... *breaking a triple bond has high activation energy (i.e., SLOW, kinetically stable),* this can be accomplished using non-biological processes: N₂ and O₂ \rightarrow NO via lightning N₂ and H₂ \rightarrow NH₃ via the industrial *Haber-Bosch process* requires T>400 °C, P>300 atm Industrial synthesis of NH₃ via the Haber process is one of mankind's most significant chemical processes.


Biosynthesis Amino Acids & Nucleotides

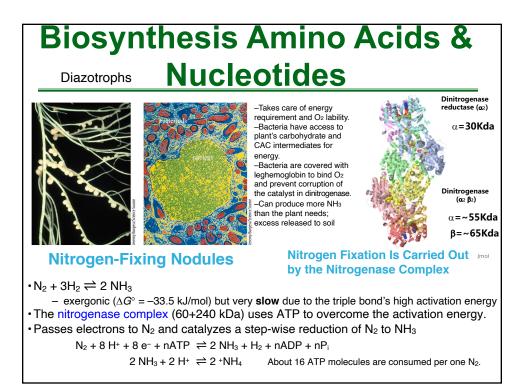
Nitrogen Assimilation versus Nitrogen Fixation

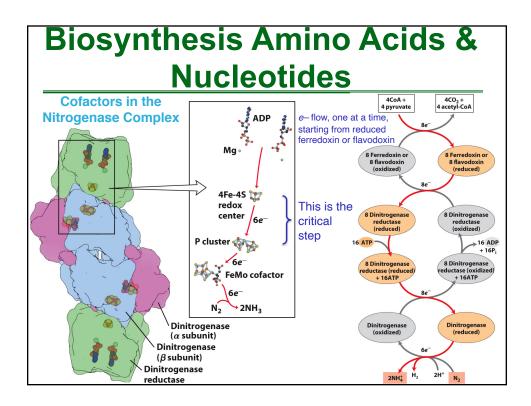
 Converts NO₃ or NO₂ to NH₃
Converts N₂ to NH₃
Converts N₂ to NH₃
Requires multiple ATPs
Uses electrons from NADH, NADPH, or photosynthetic transfer from ferrodoxin
Converts N₂ to NH₃
Requires multiple ATPs
Uses electrons from pyruvate

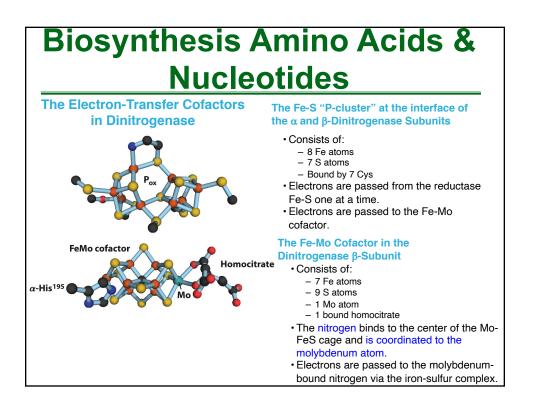
Both:

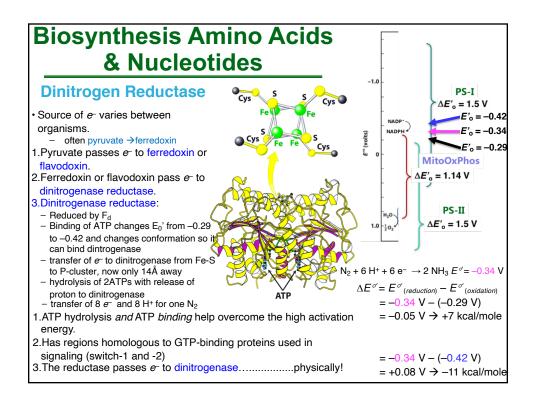
- Are electron transfer processes
- · Use Mo cofactor
- Involve multiple redox cofactors, such as Fe-S, NADH, NADPH, ferrodoxin, flavodoxin, and so on

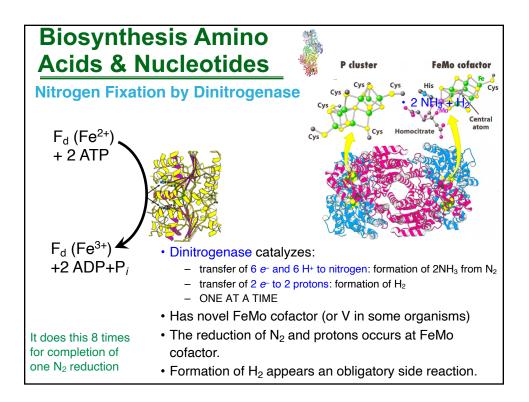
Biosynthesis Amino Acids & Nucleotides


Only a Few Organisms Can "Fix" N₂ to Useful Forms


 $N_2 + 8 H^+ + 8 e^- + 16 ATP + 16 H_2O \rightarrow 2 NH_3 + H_2 + 16 ADP + 16 P_i$


- Most are single-celled prokaryotes (archaea).
- Some live in symbiosis with plants.
 (e.g., proteobacteria with legumes such as peanuts, beans)
- A few live in symbiosis with animals.
 - (e.g., spirochaete with termites)


They have enzymes that overcome the high activation energy by binding and hydrolyzing ATP.


Like CO₂ fixation by Rubisco, oxygen can parasitize this process

